Monthly Archives: November 2015

An Argument based on Maydole’s Interpretation of Proslogion 2

Robert Maydole uses definite descriptions and Russell’s theory of descriptions to explicate Anselm’s first ontological argument in Proslogion 2.  I like the idea of using definite descriptions in the argument, and broadly agree with Maydole that Anselm intends to treat “that than which none greater can be conceived” as a definite description.  I do have some issues with Maydole’s formulation, however.  1) I think of Anselm’s argument as a reductio, but that isn’t how Maydole formulates it, 2) there are extra premises in Maydole’s formulation that are ultimately unnecessary, in my opinion, e.g. his seventh premise below 3) there is a typological error’s in Maydole’s argument, which is a minor quibble, but this seems to be a common problem with Maydole’s arguments in the Blackwell Companion to Natural Theology. It doesn’t appear that the editors proofed his arguments very well, to be honest. This is not to say that Maydole’s arguments are not ingenuiously formulated.

Maydole’s argument is formulated as follows:

Ux ≝ x is understood
Sy ≝ the concept of y exists-in-the-understanding
Ex ≝ x exists-in-reality
Gxy ≝ x is greater than y
Fxy ≝ x refers to y
Dx ≝ x is a definite description
d ≝ the definite description “(ɿx) ~©(∃y)Gyx”
g ≝ (ɿx)~©(∃y)Gyx
P(Y) ≝ Y is a great-making property
©… ≝ it is conceivable that…

Here then is our logical reconstruction of Anselm’s ontological argument:

A1 The defi nite description “that than which it is not conceivable for something to be greater” is understood. (Premise)

A2 “That than which it is not conceivable for something to be greater” refers to that than which it is not conceivable for something to be greater. (Premise)

A3 The concept of whatever a defi nite description that is understood refers to has existence-in-the-understanding. (Premise)

A4 It is conceivable that something is greater than anything that lacks a great-making property that it conceivably has. (Premise)

A5 Existence-in-reality is a great making property. (Premise)

A6 Anything the concept of which has existence-in-the-understanding conceivably has existence-in-reality. (Premise)

A7 It is not conceivable that something is greater than that than which it is not conceivable for something to be greater. (Premise)

Therefore,

A8 That than which it is not conceivable for something to be greater exists-in-reality.

The following deduction proves that this argument is valid:

Deduction

1. Dd & Ud pr
2. Fdg pr
3. (x)(y)((Dx & Fxy & Ux) ⊃ Sy) pr
4. (x1)(Y)[(P(Y) & ~Yx1 & ©Yx1) ⊃ ©(∃x2)Gx2x1] pr
5. P(E) pr
6. (x)(Sx ⊃ ©Ex) pr
7. ~©(∃y)Gyg pr
8. Fdg & ~©(∃y)Gyg 2, 7 Conj
9. (∃x)[~©(∃y)Gyx & (z)(~©(∃y)Gyx ⊃ z=x) & (Fdx & ~©(∃y)Gyx)] 8, theory of descriptions1
10. ~©(∃y)Gyν & (z)(~©(∃y)Gyz ⊃ z=ν) & (Fdν & ~©(∃y)Gyν) 9, EI
11. ~©(∃y)Gyν 10, Simp
12. Fdν 10, Simp
13. (P(E) & ~Eν & ©Eν) ⊃ ©(∃x2)Gx2ν 4 UI
14. (Dd & Fdν & Ud) ⊃ Sν 3 UI
15. (Dd & Fdν & Ud) 1, 12, Simp, Conj
16. Sν 14, 15 MP
17. Sν ⊃ ©Eν 6, UI
18. ©Eν 16, 17 MP
19. ~(P(E) & ~Eν & ©Eν) 13, 11 MT
20. ~((P(E) & ©Eν) & ~Eν) 19 Com, Assoc
21. ~(P(E) & ©Eν) ∨ ~~Eν) 20, DeM
22. P(E) & ©Eν 5, 18 Conj
23. Eν 21, 22, DS, DN
24. ~©(∃y)Gyν & (z)(~©(∃y)Gyx) ⊃ z=ν) 10 Simp
25. ~©(∃y)Gyν & (z)(~©(∃y)Gyx) ⊃ z=ν) & Eν 23, 24 Conj
26. (∃x)[~©(∃y)Gyx & (z)(~©(∃y)Gyx) ⊃ z=x) & Ex] 25 EG
27. Eg 26, theory of descriptions
(Maydole 2012, 555-557).

My version is adapted from Maydole and runs this way:

P1. Possibly, God, the x such that there is not some y such that y conceivably has greater capacities, exists in the understanding.

P2. For all x, if possibly x exists in the understanding, it is conceivable that x exists in reality.

P3. For all x, if it is not the case that x exists in reality, and x can exist in the understanding such that it is conceivable that x exists in reality, then there is some y such that y is the proposition “x exists in reality” and there is some z such that y refers to z, z can exist in the understanding and z conceivably has greater capacities than x.

C1. The x such that there is not some y such that y conceivably has greater capacities than x, i.e. God, exists in reality.

The formal deduction is as follows, let:

Cx ≝ it is conceivable that x exists in reality
Ix ≝ x exists in intellectu
Rx ≝ x exists in re
Fxy ≝ x refers to y
Gxy ≝ x conceivably has greater capacities than y
g ≝ (ɿx)~(∃y)Gyx

1. ♢Ig (premise)
2. (∀x)[♢Ix ⊃ Cx] (premise)
3. (∀x){[~Rx & (♢Ix &Cx)] ⊃ (∃y)[(y = ⌜Rx⌝) & (∃z)((Fyz &♢Iz) & Gzx)]} (premise)
4.♢Ig ⊃ Cg(2 UI)
5.♢Ig ⊃ (♢Ig & Cg) (4 Exp)
6.♢Ig & Cg (1,5 MP)
7. ~Rg (IP)
8. ~Rg & (♢Ig & Cg) (6,7 Conj)
9. [~Rg & (♢Ig & Cg)] ⊃ (∃y)[(y = ⌜Rg⌝) & (∃z)((Fyz & ♢Iz) & Gzg)](3 UI)
10. (∃y)[(y = ⌜Rg⌝) & (∃z)((Fyz & ♢Iz) &Gzg)] (8,9 MP)
11. (μ = ⌜Rg⌝) & (∃z)((Fμz & ♢Iz) & Gzg) (10 EI)
12. (Fμν &♢Iν) & Gνg (11 EI)
13. Gνg (12 Simp)
14. (∃y)Gyg (13 EG)
15. (∃x){[~(∃y)Gyx & (∀z)(~(∃y)Gyz ⊃ (z = x))] & (∃y)Gyx} (14 theory of descriptions)
16. [~(∃y)Gyμ & (∀z)(~(∃y)Gyz ⊃ (z =μ))] & (∃y)Gyμ (15 EI)
17. ~(∃y)Gyμ & (∀z)(~(∃y)Gyz ⊃ (z =μ)) (16 Simp)
18. ~(∃y)Gyμ (17 Simp)
19. (∃y)Gyμ (16 Simp)
20. (∃y)Gyμ & ~(∃y)Gyμ (18,19 Conj)
21. ~~Rg (7-20 IP)
22. Rg (21 DN)

QED

1This line has an error and should be: (∃x)[~©(∃y)Gyx & (z)(~©(∃y)Gyz ⊃ z=x) & (Fdx & ~©(∃y)Gyx)

Reference:
Maydole R. 2012. “The Ontological Argument”. In The Blackwell Companion to Natural Theology. Ed. W.L. Craig & J.P. Moreland. Malden, MA: Blackwell Publishing, pp. 555-557.

Advertisements

A Modest Formulation of the Ontological Argument

In this post, I have formulated Anselm’s argument for the necessary existence of a being than which none greater can be conceived.  However, I have noted that the argument depends upon a two-place “greater than” predicate that functions with something like the Neo-Platonic “Great Chain of Being” in mind.  Some thing, x, is conceived to be greater than y in the sense that x is understood to have more capacities or has an essence that can be actualized to a greater degree. For example, a plant is understood to contingently exists, grows, takes in nutrients, and reproduces. An animal is understood to be greater in the sense that it too contingently exists, grows, takes in nutrients, and reproduces, but it also has capacities like sentience, and can self-move, etc. So the greater something is, the more powers/more capacities it is understood to have. If God exists, then God would be that being which none more powerful could be conceived, which is just to say “none greater”. I find the metaphysics where a two-place “conceivably greater than” predicate can be objectively exemplified to be extremely plausible. There is an objective sense in which I have greater capacities and abilities than a flea.

The argument is as follows:

D1. Some x is an Anselmian God if and only if x is conceivable, it is not the case that there is something that is conceivably greater than x, and x necessarily exists.

P1. There is some x conceivable such that there is nothing conceivably greater than x.

P2. For all x, if the possibility of failing to conceive of x implies the possibility that x doesn’t exist, x is mentally dependent (premise).

P3. For all x, if x is mentally dependent, there is some y such that y is conceivably greater than x (premise).

P4. If there is some x such that necessarily there is some z and z is identical to x, and x is an Anselmian God, then necessarily there exists an Anselmian God.

Therefore,

C1. Necessarily, there is an Anselmian God.

That is the argument in ordinary language. To show that it is a formally valid syllogism, I offer the following formal deduction:

Let,

Cx ≝ x is conceived
Mx ≝ x is mentally dependent
Gxy ≝ x is conceived to be greater than y
Θx ≝ (∃x){[♢Cx & ~(∃y)♢Gyx]& ☐(∃z)(z=x)} (Def Θx)

1. (∃x)[♢Cx & ~(∃y)♢Gyx] (premise)
2. (∀x){[♢~Cx ⊃ ♢~(∃z)(z=x)] ⊃ Mx} (premise)
3. (∀x)[Mx ⊃ (∃y)♢Gyx] (premise)
4. (∃x)[☐(∃z)(z=x)& Θx] ⊃ ☐(∃x)Θx (premise)
5. (∀x){[♢Cx & ~(∃y)♢Gyx] ⊃ [♢~Cx ⊃ ♢~(∃z)(z=x)]} (IP)
6. ♢Cμ & ~(∃y)♢Gyμ (1 EI)
7. [♢~Cμ ⊃ ♢~(∃z)(z=μ)] ⊃ Mμ (2 UI)
8. Mμ ⊃ (∃y)(♢Gyμ) (3 UI)
9. [♢~Cμ ⊃ ♢~(∃z)(z=μ)] ⊃ (♢Gyμ)(7,8 HS)
10. ♢Cμ & ~(∃y)♢Gyμ] ⊃ [♢~Cμ ⊃ ♢~(∃z)(z=μ)] (5 UI)
11. ♢~Cμ ⊃ ♢~(∃z)(z=μ) (6,10 MP)
12. (∃y)♢Gyμ (7,9 MP)
13. ♢Gνμ (12 EI)
14. ~(∃y)♢Gyμ (6 Simp)
15. (∀y)~(♢Gyμ) (14 QN)
16. ~♢Gνμ (15 UI)
17. ♢Gνμ & ~♢Gνμ (13,16 Conj)
18. ~(∀x){[♢Cx & ~(∃y)♢Gyx] ⊃ [♢~Cx ⊃ ♢~(∃z)(z=x)]} (5-17 IP)
19. (∃x)~{[♢Cx & ~(∃y)♢Gyx] ⊃ [♢~Cx ⊃ ♢~(∃z)(z=x)]} (18 QN)
20. (∃x) ~{~[♢Cx & ~(∃y)♢Gyx] ∨ [♢~Cx ⊃ ♢~(∃z)(z=x)]} (19 Impl)
21. (∃x){~~[♢Cx & ~(∃y)♢Gyx] & ~[♢~Cx ⊃ ♢~(∃z)(z=x)]} (20 DeM)
22. (∃x){[♢Cx & ~(∃y)♢Gyx] & ~[♢~Cx ⊃ ♢~(∃z)(z=x)]} (21 DN)
23. (∃x){[♢Cx & ~(∃y)♢Gyx] & ~[~♢~Cx ∨ ♢~(∃z)(z=x)]} (22 Impl)
24. (∃x){[♢Cx & ~(∃y)♢Gyx] & ~[☐Cx ∨ ♢~(∃z)(z=x)]} (23 ME)
25. (∃x){[♢Cx & ~(∃y)♢Gyx] & [~☐Cx & ~♢~(∃z)(z=x)]} (24 DeM)
26. (∃x){[♢Cx & ~(∃y)♢Gyx] & [~☐Cx & ☐(∃z)(z=x)]} (25 ME)
27. [♢Cμ & ~(∃y)♢Gyμ] & [~☐Cμ & ☐(∃z)(z=μ)] (26 EI)
28. ~☐Cμ & ☐(∃z)(z=μ) (27 Simp)
29. ☐(∃z)(z=μ) (28 Simp)
30. [♢Cμ & ~(∃y)♢Gyμ] (27 Simp)
31. [♢Cμ & ~(∃y)♢Gyμ] & ☐(∃z)(z=μ) (29,30 Conj)
32. Θμ (31 Def “Θx”)
33. ☐(∃z)(z=μ) & Θμ (29,32 Conj)
34 (∃x)[☐(∃z)(z=x) & Θx] (33 EG)
35. ☐(∃x)Θx (4,34 MP)

QED

Indeed, I find the above argument very persuasive. However, there may be some who are resistant to the notion that the two-place “conceivably greater-than” predicate can actually and objectively be exemplified. For such a person, I propose a more modest version of the argument. The more modest version is that, since C1, i.e. “☐(∃x)Θx”, is provable given P1-P4,one can argue that if P1-P4 are jointly possible, C1 is possible, and so an Anselmian God necessarily exists. This follows given S5 in modal logic, which says that ◊☐P entails ☐P. The argument can be formally proved as follows:

Let, also:

P1 ≝ (∃x)[♢Cx & ~(∃y)♢Gyx]
P2 ≝ (∀x){[♢~Cx ⊃ ♢~(∃z)(z=x)] ⊃ Mx}
P3 ≝ (∀x)[Mx ⊃ (∃y)♢Gyx]
P4 ≝ (∃x)[☐(∃z)(z=x) & Θx] ⊃ ☐(∃x)Θx
C1 ≝ ☐(∃x)Θx

36. ◊[(P1 & P2) & (P3 & P4)] (premise)
37. [(P1 & P2) & (P3 & P4)] ⊢ C1 (premise; proved by 1-35)
38. [◊[(P1 & P2) & (P3 & P4)]& {[(P1 & P2) & (P3 & P4)]⊢ C1}] ⊃ ◊C1 (premise)
39. ◊[(P1 & P2) & (P3 & P4)] & {[(P1 & P2) & (P3 & P4)] ⊢ C1} (36,37 Conj)
40. ◊C1 (38,39 MP)
41. ◊☐(∃x)Θx (40 Def “C1”)
42. ☐(∃x)Θx (41 by “S5”)

QED (again)

Since (37) is established, and (38) merely argues that if premises are jointly possible, and those premises prove some conclusion, then the conclusion is possible, (38) is relatively uncontroversial.  So, if one objects that P1-P4 are not actually true, but admits that they are at least broadly logically, or metaphysically compossible, then one ought to agree that, necessarily, an Anselmian God exists.

%d bloggers like this: