Ontological Argument Improved Again

Let,

E!x ≝ x exists in re
Ix ≝ x exists in intellectu
Gx ≝ x admits of more greatness
G<Px,~Px> ≝ x having P is greater than x not having P
Gxy ≝ x is greater than y
©… ≝ it is conceivable that…

g ≝ (ɿx)(~©Gx ∧ ~©(∃y)Gyx)

1. (∀x)[(Ix ∧ ~E!x) ⊃ ©E!x] (premise)
2. (∀x)G<E!x, (~E!x ∧ Ix)> (premise)
3. (∀x){[[~E!x ∧ G<E!x, (~E!x ∧ Ix)>] ∧ ©E!x] ⊃ ©Gx}(premise)
4. Ig (premise)
5. ~E!g (IP)
6. Ig ∧ ~E!g (4,5 Conj)
7. (Ig ∧ ~E!g) ⊃ ©E!g (1 UI)
8. ©E!g (6,7 MP)
9. G<E!g, (~E!g ∧ Ig)> (2 UI)
10. ~E!g ∧ G<E!g, (~E!g ∧ Ig)> (5,9 Conj)
11. [~E!g ∧ G<E!g, (~E!g ∧ Ig)>] ∧ ©E!g (8,10 Conj)
12. [[~E!g ∧ G<E!g, (~E!g ∧ Ig)>] ∧ ©E!g] ⊃ ©Gg (3 UI)
13. ©Gg (11,12 MP)
14. (∃x){{[~©Gx ∧ ~©(∃y)Gyx] ∧ (∀z){[~©Gz ∧ ~©(∃y)Gyz] ⊃ (z = x)]}} ∧ ©Gx} (13 theory of descriptions)
15. {[~©Gμ ∧ ~©(∃y)Gyμ] ∧ (∀z){[~©Gz ∧ ~©(∃y)Gyz] ⊃ (z = μ)]}} ∧ ©Gμ (14 EI)
16. {(∀z){[~©Gz ∧ ~©(∃y)Gyz] ⊃ (z = μ)]} ∧ [~©Gμ ∧ ~©(∃y)Gyμ]} ∧ ©Gμ (15 Comm)
17. {(∀z){[~©Gz ∧ ~©(∃y)Gyz] ⊃ (z = μ)]} ∧ [~©(∃y)Gyμ ∧ ~©Gμ]} ∧ ©Gμ (16 Comm)
18. {(∀z){[[~©Gz ∧ ~©(∃y)Gyz] ⊃ (z = μ)]} ∧ ~©(∃y)Gyμ] ∧ ~©Gμ} ∧ ©Gμ (17 Assoc)
19. (∀z){[[~©Gz ∧ ~©(∃y)Gyz] ⊃ (z = μ)]} ∧ ~©(∃y)Gyμ] ∧ {~©Gμ ∧ ©Gμ} (18 Assoc)
20. ~©Gμ ∧ ©Gμ (19 Simp
21. E!g (5-20 IP)

Advertisements

Posted on April 9, 2017, in Arguments for God and tagged . Bookmark the permalink. Leave a comment.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: