Well, he didn’t

Let

Fx ≝ x is a financier
Rxy ≝ x ran a sex trafficking ring out of y
Kxy ≝ x killed y
j ≝ (ɿx)(Fx ∧ Rxl)
l ≝ Little St. James Island

1. ~(∃x)[(Fx ∧ Rxl) ∧ Kxx](premise)
2. Kjj (Assumption for Indirect Proof)
3. (∃x){[(Fx ∧ Rxl) ∧ (∀y)[(Fy ∧ Ryl)→ (y = x)] ∧ Kxx} (2 theory of descriptions)
4. [(Fμ ∧ Rμl) ∧ (∀y)[(Fy ∧ Ryl)→ (y = μ)] ∧ Kμμ (3 EI)
5. (∀x)~[(Fx ∧ Rxl) ∧ Kxx] (1 QN)
6. ~[(Fμ ∧ Rμl) ∧ Kμμ] (5 UI)
7. [(Fμ ∧ Rμl) ∧ (∀y)[(Fy ∧ Ryl)→ (y = μ)] (4 Simp)
8. Fμ ∧ Rμl (7 Simp)
9. Kμμ (4 Simp)
10. (Fμ ∧ Rμl)∧ Kμμ (8,9 Conj)
11. [(Fμ ∧ Rμl)∧ Kμμ] ∧ ~[(Fμ ∧ Rμl) ∧ Kμμ] (6,10 Conj)
12. ~Kjj (2-11 Indirect Proof)

QED

Posted on December 10, 2019, in Uncategorized. Bookmark the permalink. Leave a comment.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s