Blog Archives

An Ontological Argument from Pure Actuality

Informal Argument

D1. God is the being of pure actuality.
P1. For all x, if x exists in the intellect but not in reality, then there is a y such that x is causally dependent on y.
P2. For all x, if x is purely actual, then there is not a y such that x is causally dependent on y.
P3. God is in the intellect.
C. God is in reality

Defense of Definitions and Premises

It should be noted, at the outset that this argument is in Free Logic. As such, the existential quantifier carries no existential import in the argument. This prevents any inference of the existence of God from the definition alone.

D1: A being of pure actuality is simply a being that lacks any potentiality. Such a being has, as Aquinas argues, the divine attributes of omnipotence, omniscience, immutability, eternity, immateriality, and uniqueness. It is this last feature, uniqueness, that justifies the use of a definite description, since there can be only one such being. Instead, existential claims are made by the predicate “R” in the formal argument below, which means that something exists in sense of being real, as opposed to existing in a fictitious or imaginary way.

P1: This premise is motivated by the fact that if something exists in the intellect alone, then its existence is causally dependent on some mind.

P2: A being of pure actuality exists a se, and uncaused, as Thomas proves in his five ways.

P3: Every Thomist who contemplates the implications of a being of pure actuality has the Thomistic conception of God in mind.

The Formal Proof

Let,

Ix ≝ x is in intellectu
Rx ≝ x is in re
Dxy ≝ x is is causally dependent on y
Ax ≝ x is purely actual
g ≝ (ɿx)Ax

1. (∀x)[(Ix ∧ ~Rx) → (∃y)Dxy] (premise)
2. (∀x)(Ax → ~(∃y)Dxy) (premise)
3. Ig (premise)
4. (Ig ∧ ~Rg) (IP)
5. (Ig ∧ ~Rg) → (∃y)Dgy (1 UI)
6. (∃y)Dgy (4,5 MP)
7. Dgμ (6 EI)
8. (∃x){[Ax ∧ (∀y)[Ay → (y = x)]] ∧ Dxμ} (7 theory of descriptions)
9. [Aν ∧ (∀y)[Ay → (y = ν)]] ∧ Dνμ (8 EI)
10. Aν ∧ (∀y)[Ay → (y = ν)] (9 Simp)
11. Aν (10 Simp)
12. Aν → ~(∃y)Dνy (2 UI)
13. ~(∃y)Dνy (11,12 MP)
14. (∀y)~Dνy (13 QN)
15. ~Dνμ (14 UI)
16. Dνμ (9 Simp)
17. Dνμ ∧ ~Dνμ (15,16 Conj)
18. ~(Ig ∧ ~Rg) (4-17 IP)
19. ~Ig ∨ ~~Rg (18 DeM)
20. ~~Rg (3,19 DS)
21. Rg (20 DN)

QED

Improving the Formulation of Bonaventure’s OA

The following formulation relies on one less premise than my previous formulation, and avoids the implication that there are not objects which refer to God and which are not completely God, i.e. that there are not objects of thought to which “God” refers (a problem that resulted from the way I formulated P2 in the earlier version).

D1) God is absolutely complete
P1) If no objects to which “God” refers  are objects that truly and completely possess the divine essence, then God is not absolutely complete.
P2) If there is an object to which “God” refers and it truly and completely has the divine essence, then God exists in reality.
C) God exists in reality

Let,

Cx ≝ x is absolutely complete
Dx ≝ x truly and completely has the divine essence
Rxy ≝ x is the entity to which “y” refers
E!x ≝ x exists in reality
g ≝ (ɿx)Cx

1. (∀x)(Rxg → ~Dx) → ~Cg (premise)
2. (∃x)(Rxg ∧ Dx) → E!g (premise)
3. (∀x)(Rxg → ~Dx) (IP)
4. ~Cg (1,3 MP)
5. (∃x)[Cx ∧ (∀y){[Cy →(y = x)] ∧ ~Cx} (4 theory of descriptions)
6. [Cμ ∧ (∀y){[Cy →(y = μ)] ∧ ~Cμ (5 EI)
7. [(∀y){[Cy →(y = μ) ∧ Cμ] ∧ ~Cμ (6 Comm)
8. (∀y){[Cy →(y = μ) ∧ [Cμ ∧ ~Cμ] (7 Assoc)
9. Cμ ∧ ~Cμ (8 Simp)
10. ~(∀x)(Rxg → ~Dx) (3-9 IP)
11. ~(∀x)(~Rxg ∨ ~Dx)(10 Impl)
12. ~(∀x)~(Rxg ∧ Dx)(11 DeM)
13. (∃x)~~(Rxg ∧ Dx) (12 QN)
14. (∃x)(Rxg ∧ Dx) (13 DN)
15. E!g (2,14 MP)

QED

A Formulation of Bonaventure’s Ontological Argument

franc3a7ois2c_claude_28dit_frc3a8re_luc29_-_saint_bonaventure

Image Source: Wikipedia “Bonaventure

<<Si Deus est Deus, Deus est.>>

Bonaventure writes the following argument:

No one can be ignorant of the fact that this is true: the best is the best; or think that it is false. But the best is a being which is absolutely complete. Now any being which is absolutely complete, for this very reason, is an actual being. Therefore, if the best is the best, the best is. In a similar way, one can argue: If God is God, then God is. Now the antecedent is so true that it cannot be thought not to be. Therefore, it is true without doubt that God exists (Bonaventure, De mysterio trinitatis 1.1 fund. 29 (ed. Quaracchi V 48).

The overly-simplified version of the argument is:

P1) If God is God, then God is.

P2) God is God.

C) God is.

Noone and Houser (2013) write, “…the premise If God is God is not an empty tautology (Seifert 1992, 216–217). It means ‘if the entity to which the term God refers truly possesses the divine essence.’ And the conclusion means that such an entity must exist.”  This inspired me to reconstruct Bonaventure’s argument as best I can.

Informally the argument is:

D1) “God” is the absolutely complete being.
P1) There is an object to which the term “God” refers.
P2) If the object to which the term “God” refers does not truly and completely possess the divine essence, then God is not absolutely complete.
P3) If object to which the term “God” refers truly and completely possesses the divine essence, then God exists in reality.
C) God, the being who truly and completely possesses the divine essence, exists in reality.
Explanation of D1: Here we stipulate that God is defined as complete in every positive simple attribute, which is to say that by “God”, we mean a perfect being. This definitions is a definite description, i.e. it refers to a singular term, since absolute completeness implies omnipotence, and there can only be one omnipotent being. For, if there were two, one could will contrary to the other, and absurdity would follow. A stipulation is to be granted, so long as it is coherent, otherwise any conclusion could be deduced from it. As to whether the definition of an absolutely complete being is coherent, it should be noted that perfections, in being both simple and positive, cannot contain any explicit or implicit contradiction, and so the stipulate is logically coherent.
Defense of P1: This is to say that the term “God” refers to some imagined, conceived, or real object. The atheist should agree that “God” refers to some object, even if the object is just something in the theist’s fancy.
Defense of P2: Since the antecedent of (P2) specifies a way in which object to which the term “God” refers would be incomplete, it follows of analytic necessity that the object named by “God” is not absolutely complete, i.e. God is not absolutely complete.

Defense of P3: To grant that there is an object which truly and completely possesses the divine essence is semantically equivalent to granting that that which everyone calls “God”, i.e. a perfect being, exists in reality.

Further notes:

  • In other words, it is asking whether the object to which “God” refers is a perfect being. If it is not a perfect being, then “God” means an absolutely complete being and does not refer to an absolutely complete being. There is an “incompleteness” inherent in this relationship, which means that if “God” fails to refer to that which is truly God, then we mean that God, a complete being, is not a complete being. Our sense of “God” would be contradictory in nature.
  • We cannot include in the sense of what “God” is, the notion that “God” refers to something that isn’t completely God.
  • The only consistent alternative is to mean that the object which we name “God” exists in reality, and completely has the divine essence.
  • What Bonaventure is saying is that the sense of “God” must include that it references God, or else the the sense is incoherent. So to grant that there is an object to which the sense of “God” refers is sufficient to prove there is God.

Formally:

Let,

Cx ≝ x absolutely complete
Dx ≝ x truly and completely has the divine essence
Rxy ≝ x is the entity to which “y” refers
E!x ≝ x exists in reality
g ≝ (ɿx)Cx

1. (∃x)Rxg (premise)
2. (∀x)[(Rxg ∧ ~Dx) → ~Cg] (premise)
3. (∃x)(Rxg ∧ Dx) → E!g (premise)
4. Rμg (1 EI)
5. Rμg ∧ ~Dμ (IP)
6. (Rμg ∧ ~Dμ) → ~Cg (2 UI)
7. ~Cg (5,6 MP)
8. (∃x)[Cx ∧ (∀y){[Cy →(y = x)] ∧ ~Cx} (7 theory of descriptions)
9. [Cν ∧ (∀y){[Cy →(y = ν)] ∧ ~Cν (8 EI)
10. [(∀y){[Cy →(y = ν) ∧ Cν] ∧ ~Cν (9 Comm)
11. (∀y){[Cy →(y = ν) ∧ [Cν ∧ ~Cν] (10 Assoc)
12. Cν ∧ ~Cν (11 Simp)
14. ~(Rμg ∧ ~Dμ) (5-13 IP)
15. ~Rμg ∨ ~~Dμ (14 DeM)
16. ~~Rμg (4 DN)
17. ~~Dμ (15,16 DS)
18. Dμ (17 DN)
19. Rμg ∧ Dμ (4,18 Conj)
20 (∃x)(Rxg ∧ Dx) (19 EG)
21. E!g (3,20 MP)

QED

References:

Noone, Tim and Houser, R. E., “Saint Bonaventure”, The Stanford Encyclopedia of Philosophy (Winter 2014 Edition), Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/win2014/entries/bonaventure/&gt;.

Seifert, Josef, 1992. “‘Si Deus est Deus, Deus est’: Reflections on St. Bonaventure’s Interpretation of St. Anselm’s Ontological Argument,” Franciscan Studies, 52: 215–231.

Credo

Definition: God is a perfect, necessarily existing, personal being.
1) If one thinks that it is very probable that God is not broadly logically/metaphysically impossible, then one should think it is very probable that God exists.
2) I think it is very probable that God is not broadly logically/metaphysically impossible.
3) I should think it is very probable that God exists. (From 1 and 2)
4) I understand my epistemic obligation in (3).
5) If I understand my epistemic obligations regarding a proposition that I should think is true, then I think that proposition is true.
6) I think it is very probable that God exists. (From 3, 4, and 5)

An Inductive Way of Thinking about the Modal Ontological Argument

P1. If philosophers of religion over the past 50+ years have successfully defended the coherence of the concept of a maximally great God, then probably a maximally great God is metaphysically possible.
P2. The metaphysical possibility of a maximally great God entails that a maximally great God exists.
P3. Philosophers of religion over the past 50+ years have successfully defended the coherence of the concept of a maximally great God.
C. Probably a maximally great God exists.

I think this argument also helps to distinguish between epistemic possibility (I think it is probable because of sustained intellectual scrutiny) and metaphysical possibility.

Also, I should note that by the coherence of the concept of a maximally great God, I mean more than mere consistency among the attributes, or even self-consistency of each attribute, but also the coherence of theism with other facts, necessary or contingent, e.g. evil or suffering.

 

A Slingshot from S4 to S5 establishing the Modal Ontological Argument?

…Or why the “strong” atheologian, i.e. the atheologian who holds that there is no omniscient, omnipotent, and omnibenevolent being, must say that ♢Θ semantically entails ☐Θ in S4.

Θ is the proposition that necessarily there is an omniscient, omnipotent, and omnibenevolent being.

That is:

Kx ≝ x is omniscient
Px ≝ x is omnipotent
Bx ≝ x is omnibenevolent
Θ ≝ ☐(∃x)[(Kx ∧ Px) ∧ Bx]

Consider the following:

1. It is false that ♢Θ semantically entails ☐Θ in S4.

If that is true, then:

2. There is a world in which the valuation of ♢Θ at that world in S4 is true, and the valuation of ☐Θ at that world in S4 is false.

But this is just to say…

3. ♢♢Θ

That is, there is a world in which it is true that ♢Θ.  Moreover, it is an axiom of S4 that ♢♢p → ♢p, and so:

4. ♢Θ

But given our definition for “Θ”, we can say:

5. ♢☐(∃x)[(Kx ∧ Px) ∧ Bx]

Since S5 is just an extension of S4, if something is possible in S4 it is also possible in S5.  Given that ♢☐p → ☐p is an axiom in S5:

6. ☐(∃x)[(Kx ∧ Px) ∧ Bx]

And since ☐p → p in S5 (axiom M/T), we can conclude:

7. (∃x)[(Kx ∧ Px) ∧ Bx]

Hence, the committed “strong” atheologian must say that ♢Θ semantically entails ☐Θ in S4.  Moreover, since S4 is strongly complete, the atheologian is committed to:

♢Θ ⊢S4 ☐Θ

I’d like to see that deduction.

[Update]: One objection that I have encountered is that the move from 5 to 6 seems to switch frameworks from S4 to S5, and so the argument is invalid. The argument does not presume S4 as the framework, but rather attempts to exploit an intuition about what is semantically entailed about ♢Θ in S4. In other words, if you grant that such entailment doesn’t hold in S4, I think it follows that you are committed to ♢♢Θ in S4 and S5, which of course is just to say that you are committed to ♢Θ in S5. So from the framework of S5, and its related axioms, you would have to be committed to Θ.

In an attempt to more clearly show how I am not applying axioms of S5 in S4, here is a more formal representation of the argument. Add to our key, the following:

T ≝ true
F ≝ false
V(ω)M(P) = … the valuation at ω in model M of proposition p equals…

1. (∀p)(∀q)~[p ⊨S4 q] → (∃ω){[V(ω)S4(p) = T] ∧ [V(ω)S4(q) = F] (premise)
2. (∃ω){[V(ω)S4(p) = T] ∧ [V(ω)S4(q) = F] → ⊨S4♢p} (premise)
3. (∀p){⊨S4♢p → (∃ω){[V(ω)S5(p) = T]} (premise)
4. (∀p)(∃ω){[V(ω)S5(p) = T] → ⊨S5♢p} (premise)
5. (∀p)[⊨S5♢♢☐p → ⊢S5☐p] (premise)
6. ~[♢Θ ⊨S4 ☐Θ] (premise)
7. (∀q)~[♢Θ ⊨S4 q] → (∃ω){[V(ω)S4(♢Θ) = T] ∧ [V(ω)S4(q) = F] (1 UI)
8. ~[♢Θ ⊨S4 ☐Θ] → (∃ω){[V(ω)S4(♢Θ) = T] ∧ [V(ω)S4(☐Θ) = F] (7 UI)
9. (∃ω){[V(ω)S4(♢Θ) = T] ∧ [V(ω)S4(☐Θ) = F] (6,8 MP)
10. [V(w)S4(♢Θ) = T] ∧ [V(w)S4(☐Θ) = F (9 EI)
11. [V(w)S4(♢Θ) = T] (10 Simp)
12. (∃ω)S4(♢Θ) = T] (11 EG)
13. (∃ω){[V(ω)S4(♢Θ) = T] → ⊨S4♢♢Θ (2 UI)
14. ⊨S4♢♢Θ (12,13 MP)
15. ⊨S4♢♢Θ → (∃ω){[V(ω)S5(♢Θ) = T] (3 UI)
16.(∃ω){[V(ω)S5(♢♢Θ) = T] → ⊨S5♢♢Θ (4 UI)
17. ⊨S4♢♢Θ → ⊨S5♢♢Θ (15,16 HS)
18. ⊨S5♢♢Θ (14,17 MP)
19. ⊨S5♢♢☐(∃x)[(Kx ∧ Px) ∧ Bx] (18 Def “Θ”)
20. ⊨S5♢♢☐(∃x)[(Kx ∧ Px) ∧ Bx] → ⊢S5☐(∃x)[(Kx ∧ Px) ∧ Bx] (5 UI)
21. ⊢S5☐(∃x)[(Kx ∧ Px) ∧ Bx](19,20 MP)

The Dilemma Once More

P1. If it is possible that necessarily there is an omniscient, omnipotent, omnibenevolent being, necessarily there is an omniscient, omnipotent, omnibenevolent being. (From axiom 5 of S5)[1]

P2. Either the proposition “necessarily there is an omniscient, omnipotent, omnibenevolent being” entails the proposition “there is gratuitous evil and suffering” or it is not the case the proposition “necessarily there is an omniscient, omnipotent, omnibenevolent being” entails the proposition “there is gratuitous evil and suffering”. (From the Law of the Excluded Middle)[2]

P3. For all propositions p if there is some proposition q such that it is not the case that p entails q, then possibly p. (Contraposition of the Principle of Explosion)[3][4]

C1. If it is not the case the proposition “necessarily there is an omniscient, omnipotent, omnibenevolent being” entails the proposition “there is gratuitous evil and suffering”, it is possible that necessarily there is an omniscient, omnipotent, omnibenevolent being. [From P3][5]

C2. If it is not the case the proposition “necessarily there is an omniscient, omnipotent, omnibenevolent being” entails the proposition “there is gratuitous evil and suffering”, necessarily there is an omniscient, omnipotent, omnibenevolent being. [From P1 and C1, Hypothetical Syllogism][6]

P4. If the proposition “necessarily there is an omniscient, omnipotent, omnibenevolent being” entails the proposition “there is gratuitous evil and suffering”, gratuitous evil and suffering is not counter-evidence to the proposition “necessarily there is an omniscient, omnipotent, omnibenevolent being”.[7]

C3. Either necessarily there is an omniscient, omnipotent, omnibenevolent being, or gratuitous evil and suffering is not counter-evidence to the proposition “necessarily there is an omniscient, omnipotent, omnibenevolent being.” (From P2,C2,P4 Constructive Dilemma)[8][9]

[1] The axiom in S5 can be found here: https://en.m.wikipedia.org/wiki/S5_(modal_logic). So, given the axiom 5 of S5: ♢p → ☐♢p

Here is the proof for P1:

Let

Kx ≝ x is omniscient
Px ≝ x is omnipotent
Bx ≝ x is omnibenevolent

1 ~ ☐(∃x)[(Kx ∧ Px) ∧ Bx] (Assump. CP)
2 ~ ☐~~(∃x)[(Kx ∧ Px) ∧ Bx] (1 DN)
3 ♢~(∃x)[(Kx ∧ Px) ∧ Bx] (2 ME)
4 ☐♢~(∃x)[(Kx ∧ Px) ∧ Bx] (3 Axiom 5)
5 ☐~~♢~(∃x)[(Kx ∧ Px) ∧ Bx] (4 DN)
6 ☐~☐(∃x)[(Kx ∧ Px) ∧ Bx] (5 ME)
7 ~☐(∃x)[(Kx ∧ Px) ∧ Bx] → ☐~☐(∃x)[(Kx ∧ Px) ∧ Bx] (CP 1-6)
8 ~☐~☐(∃x)[(Kx ∧ Px) ∧ Bx] → ~~☐(∃x)[(Kx ∧ Px) ∧ Bx] (7 Contra)
9 ~☐~☐(∃x)[(Kx ∧ Px) ∧ Bx] → ☐(∃x)[(Kx ∧ Px) ∧ Bx] (8 DN)
10 ♢☐(∃x)[(Kx ∧ Px) ∧ Bx] → ☐(∃x)[(Kx ∧ Px) ∧ Bx] (9 ME)

[2] The Law of the Excluded Middle can be found here: https://en.m.wikipedia.org/wiki/Law_of_excluded_middle

[3] Contraposition can be found here: https://en.m.wikipedia.org/wiki/Contraposition

[4] The Principle of Explosion can be found here: https://en.m.wikipedia.org/wiki/Principle_of_explosion

Here is the proof that P3 is the contrapositive of the Principle of Explosion, which we will state as follows: (∀p)[~♢p → (∀q)(p ⊨ q)], for all propositions p, if p is impossible, then for all propositions q1, p entails q.

1 (∀p)[~♢p → (∀q)(p ⊨ q)] (Principle of Explosion)
2 ~♢φ → (∀q)(φ ⊨ q) (1 UI)
3 ~(∀q)(φ ⊨ q) → ~~♢φ (2 Contra)
4 (∃q)~(φ ⊨ q) → ~~♢φ (3 QN)
5 (∃q)~(φ ⊨ q) → ♢φ (4 DN)
6 (∀p)(∃q)~(p ⊨ q) → ♢p] (5 UG)

[5] Here is the proof that C1 follows from P3:

Let

G ≝ ☐(∃x)[(Kx ∧ Px) ∧ Bx]
E ≝ ‘there is gratuitous evil and suffering’

1 (∀p)(∃q)~(p ⊨ q) → ♢p] (P3)
2 ~(G ⊨ E) (Assump. CP)
3 (∃q)~(G ⊨ q) → ♢G (1 UI)
4 (∃q)~(G ⊨ q) (2 EG)
5 ♢G (3,4 MP)
6 ~(G ⊨ E) → ♢G (205 CP)
7 ~(G ⊨ E) → ♢☐(∃x)[(Kx ∧ Px) ∧ Bx] (6 def. of ‘G’)

Thus Line 7 (C1) follows from Line 1 (P3), QED.

[6] Hypothetical Syllogism can be found here: https://en.m.wikipedia.org/wiki/Hypothetical_syllogism

[7] This premise is defended on given a Bayesian interpretation of counter-evidence:
(∀p)(∀q){[P(p|q)<P(p)] ⊃ Cqp} (read as: for all proposition p and q, if the probability of q given p is less than the probability of q unconditioned, then q is counter-evidence for p).

If we assume G ⊨ E, then by Logical Consequence P(E|G) = 1, but if E is counter-evidence to G, then it must be the case that P(G|E) < P(G). But both of these statements about probabilities cannot be true.

According to Bayes’ Theorem:

P(E|G) = [P(E)/P(G)] x P(G|E)

So given P(E|G) = 1

We can infer:

P(G)/P(G|E) = P(E)

But given 0 ≤ P(E) ≤ 1, it is not possible for P(G)/P(G|E) = P(E) and P(G|E) < P(G), as whenever the denominator is less than the numerator, the result is greater than 1.

Hence, we must reject the assumption that [P(E|G) = 1] ∧ [P(G|E) < P(G)]. This provides us with the following defense of P4:

1 ~{[P(E|G) = 1] ∧ [P(G|E) < P(G)]} (Result from the proof by contradiction above)
2 ~[P(E|G) = 1] ∨ ~[P(G|E) < P(G)] (1 DeM)
3 [P(E|G) = 1] → ~[P(G|E) < P(G)] (2 Impl)
4 [G ⊨ E] → [P(E|G) = 1] (by Logical Consequence)
5 [G ⊨ E] → ~[P(G|E) < P(G)] (3,4 HS)

And line 5 is just what is meant by P4.

[8] Constructive Dilemma can be found here: https://en.m.wikipedia.org/wiki/Constructive_dilemma

[9] The proof of the entire argument is as follows:

1 ♢☐(∃x)[(Kx ∧ Px) ∧ Bx] → ☐(∃x)[(Kx ∧ Px) ∧ Bx] (Premise)
2 (G ⊨ E) ∨ ~(G ⊨ E) (Premise)
3 (∀p)(∃q)~(p ⊨ q) → ♢p] (Premise)
4 [G ⊨ E] → ~[P(G|E) < P(G)] (Premise)
5 ~(G ⊨ E) (Assump CP)
6 (∃q)~(G ⊨ q) → ♢G (3 UI)
7 (∃q)~(G ⊨ q) (5 EG)
8 ♢G (6,7 MP)
9 ~(G ⊨ E) → ♢G (5-8 CP)
10 ~(G ⊨ E) → ♢☐(∃x)[(Kx ∧ Px) ∧ Bx] (9 definition of ‘G’)
11 ~(G ⊨ E) → ☐(∃x)[(Kx ∧ Px) ∧ Bx] (1,10 HS)
12 ☐(∃x)[(Kx ∧ Px) ∧ Bx] ∨ ~[P(G|E) < P(G)] (2,4,11 CD)

The Cartesian Ontological Argument

D1. God is the x such that for all attributes Y, if Y is a perfection, Y belongs to x.
P1. Necessarily existing is a perfection
P2. For all x, if it is not the case that x exists, possibly it is not the case that x exists.
C. God exists.

Let,

E!x ≝ x exists
P(Y)≝ Y is a perfection

g ≝ (ɿx)(∀Y)(P(Y)⊃ Yx)

1. P(☐E!) (premise)
2. (∀x)[~E!x ⊃ ♢~E!x] (premise)
3. ~E!g (IP)
4. (∃x){[(∀Y)(P(Y) ⊃ Yx) ∧ (∀y)[(∀Y)(P(Y) ⊃ Yy) ⊃ (y = x)]] ∧ ~E!x} (3 theory of descriptions)
5. [(∀Y)(P(Y)⊃ Yμ) ∧ (∀y)[(∀Y)(P(Y)⊃ Yy) ⊃ (y = μ)]] ∧ ~E!μ (4 EI)
6. ~E!μ ⊃ ♢~E!μ (2 UI)
7. ~E!μ (5 Simp)
8. ♢~E!μ (6,7 MP)
9. ~☐E!μ (8 MN)
10. (∀Y)(P(Y) ⊃ Yμ) ∧ (∀y)[(∀Y)(P(Y) ⊃ Yy) ⊃ (y = μ)] (5 Simp)
11. (∀Y)(P(Y) ⊃ Yμ) (10 Simp)
12. P(☐E!) ⊃ ☐E!μ (11 UI)
13. ☐E!μ (1,12 MP)
14. ☐E!μ ∧ ~☐E!μ (9,13 Conj)
15. ~~E!g (3-14 IP)
16. E!g (15 DN)

QED

In the definition, I am just setting down what I take g to mean… all I mean by g is that it is the something that, for any attribute, if that attribute is a perfection, then it has that perfect attribute. So God is the being that has all perfections (as I define God).  You might say that there is no definite description of a perfect being, i.e. there could be multiple perfect beings.  However, I would argue that there cannot be two omnipotent beings, since a simple reductio would rule out this possibility.  That is, if there are two omnipotent beings, then any power the one has would be limited by whether or not the other being wills to bring about a contradictory state of affairs.  Since they cannot both bring about contradictory states of affairs, they cannot both be omnipotent.  So there cannot be two beings that have all perfections, given that omnipotence is a perfection that implies uniqueness.  Descartes says that his idea of a supremely perfect being is clear and distinct, which in turn justifies is appeal to the definition (even incoherent stipulated definitions can be rejected).  Leibniz famously demanded a more rigorous proof that the definition is coherent, and sought to prove all perfections cohere.  I think it is a mistake to then interpret Leibniz’s ontological argument in terms of using God’s possibility to infer his necessary existence via S5 in modal logic.  Rather, I think he is doing what Descartes is doing, namely trying to show that the definition of God is self-consistent.

Leibniz’s proof for the self-consistency of the concept of a supremely perfect being is through an analysis of a perfection, which he says is simple, positive, and unlimited.  If any two perfections are inconsistent, one of them would have to be negative, or contain a part that is negative.  But a perfection cannot, by definition, be negative, or contain parts.  So any two perfections can cohere.  Leibniz reasons that if this is so, then all perfections cohere, and so a being that has all perfections is coherent.

P1 say necessary existence is a perfection because a perfection is any attribute that is of a simple kind that is positively complete. Omniscience is a perfection of because it is an attribute of the simple kind (knowledge) that is positively complete. Whatever has omniscience lacks nothing with respect to knowledge. So we recognize omniscience as a kind of perfection regarding knowledge. So necessary existence is an attribute regarding the simple kind “modes of existence” that is positively complete. Whatever exists necessarily exists in all possible situations, so it does not lack positive existence given any other state of affairs.

P2 is axiomatically true given that if something is necessarily true (system M of modal logic), then it is true. Assume P2 is false: ~(~E!x ⊃ ♢~E!x), this is logically equivalent to saying ~E!x ∧ ☐E!x (x does not exist and necessarily x exists). Given system M, ☐E!x implies E!x, so P2 cannot be false. In order to object to P2, you would have to say that some necessary truths are not actually true, which I think is a rather absurd position to take.

A Possible Interpretation of Proslogion 2

One of my struggles in trying to understand Proslogion 2 is how Anselm gets to the actual existence of God rather than what he arrives at in Proslogion 3, namely the inconceivability of God’s non-existence.  I’ve also struggled with the notion of using a two-place predicate like “greater than”, since Anselm tells us that if God exists in the mind alone, a greater could be conceived, i.e. to think of God as existing in reality.  Here, we are saying that we could conceive of one and the same concept in greater ways rather than conducting a comparison of the God concept to other items in the world.  The following interpretation approximates what Anselm seems to be arguing, and I would say that it is a sound argument for God’s existence.

D1. God is defined as that which cannot be conceived to admit of more greatness.
P1. For all x, if x exists in intelletu and not in re, then it can be conceived that x exists in intellectu and not in re.
P2. For all x, if it can be conceived that x exists in intellectu and not in re, then it can be conceived that x exists in intellectu and in re.
P3. For all x, if it can be conceived that x exists in intellectu and not in re and it can be conceived that x exists in intellectu and in re, then it is conceivable that x admits of more greatness.
P4. God exists in intellectu.
C. Therefore, God exists in re.

Let,

E!x ≝ x exists in re
Ix ≝ x exists in intellectu
Gx ≝ x admits of more greatness
©… ≝ it is conceivable that…

g ≝ (ɿx)~©Gx

1. (∀x)[(Ix ∧ ~E!x) ⊃ ©(Ix ∧~E!x)] (premise)
2. (∀x)[©(Ix ∧ ~E!x) ⊃ ©(Ix ∧ E!x)] (premise)
3. (∀x){[©(Ix ∧ ~E!x) ∧ ©(Ix ∧ E!x)] ⊃ ©Gx} (premise)
4. Ig (premise)
5. ~E!g (IP)
6. Ig ∧ ~E!g (4,5 Conj)
7. (Ig ∧ ~E!g) ⊃ ©(Ig ∧~E!g) (1 UI)
8. ©(Ig ∧~E!g) (6,7 MP)
9. ©(Ig ∧ ~E!g) ⊃ ©(Ig ∧ E!g) (2 UI)
10. ©(Ig ∧ E!g) (8,9 MP)
11. ©(Ig ∧~E!g) ∧ ©(Ig ∧ E!g) (8,10 Conj)
12. ©(Ig ∧ ~E!g) ∧ ©(Ig ∧ E!g)] ⊃ ©Gg (3 UI)
13. ©Gg (11,12 MP)
14. (∃x){{~©Gx ∧ (∀y)[~©Gy ⊃ (y = x)]} ∧ ©Gx} (13 theory of descriptions)
15. {~©Gμ ∧ (∀y)[~©Gy ⊃ (y = μ)]} ∧ ©Gμ (14 EI)
16. {(∀y)[~©Gy ⊃ (y = μ)] ∧ ~©Gμ} ∧ ©Gμ (15 Comm)
17. (∀y)[~©Gy ⊃ (y = μ)] ∧ {~©Gμ ∧ ©Gμ} (16 Assoc)
18. ~©Gμ ∧ ©Gμ (17 Simp)
19. E!g (5-18 IP)

QED

[Edit: My friend, Matt, thinks my argument may be susceptible to parody.  Here is my response]

Generally, I think parodies fail because such supposed objects, like islands of which none greater can be conceived, do not really exist in the intellect for the very same reason round squares are not abstract objects in the mind.  The phrase is nonesense, and so does not pick out any object of the understanding.

Islands just are the sorts of things that admit of degrees of greatness, so are other objects used in parody. For example, islands are present in a specified location that is surrounded by water, but it is unclear how big an island should be when considering its greatness.  It certainly cannot be omnipresent and be an island.  How many trees, island beauties, or sandy beaches ought there to be on the island which cannot be conceivably greater?  

My argument can motivate this response by proving that the greatest conceivable island is not an object that exists in the intellect.  This is because specifying that there is an island than which none greater can be conceived leads to the conclusion that God is an island, and that seems like a good reductio of the idea such a concept can be conceived.

So, if we grant the parody, I could prove that island can be predicated of God, or a being than which a greater cannot be conceived. But since islands are essentially contingent and admit of degrees of greatness, island cannot be a predicate of God, who is the being than which none greater can be conceived. So, we must reject the assumption that a greatest conceivable island exists in intellectu and we can base it on the somewhat reasonable premise that God is not an island. I would argue as follows:

Let,

Lx ≝ x is an island

i ≝ (ɿx)(~©Gx ∧ Lx)

20. ~Lg (premise)
21. (∃x){{~©Gx ∧ (∀y)[~©Gy ⊃ (y = x)]} ∧ E!x} (19 theory of descriptions)
22. Ii (IP)
23. (∃x){{(~©Gx ∧ Lx) ∧ (∀y)[(~©Gy ∧ Ly) ⊃ (y = x)]} ∧ Ix} (22 theory of descriptions)
24. {~©Gμ ∧ (∀y)[~©Gy ⊃ (y = μ)]} ∧ E!μ (21 EI)
25. {(~©Gν ∧ Lν) ∧ (∀y)[(~©Gy ∧ Ly) ⊃ (y = ν)]} ∧ Iν (23 ΕΙ)
26. ~©Gμ ∧ (∀y)[~©Gy ⊃ (y = μ)] (24 Simp)
27. (∀y)[~©Gy ⊃ (y = μ)] (26 Simp)
28. (~©Gν ∧ Lν) ∧ (∀y)[(~©Gy ∧ Ly) ⊃ (y = ν)] (25 Simp)
29. ~©Gν ∧ Lν (28 Simp)
30. ~©Gν (29 Simp)
31. ~©Gν ⊃ (ν = μ) (27 UI)
32. ν = μ (30,31 MP)
33. ~©Gμ ∧ Lμ (29,32 ID)
34. (~©Gμ ∧ Lμ) ∧ (∀y)[~©Gy ⊃ (y = μ)] (27,33 Conj)
35. ~©Gμ ∧ {Lμ ∧ (∀y)[~©Gy ⊃ (y = μ)]} (34 Assoc)
36. ~©Gμ ∧ {(∀y)[~©Gy ⊃ (y = μ)] ∧ Lμ} (35 Comm)
37. {~©Gμ ∧ {(∀y)[~©Gy ⊃ (y = μ)]} ∧ Lμ (36 Assoc)
38. (∃x){{~©Gx ∧ {(∀y)[~©Gy ⊃ (y = x)]} ∧ Lx} (37 EG)
39. Lg (38 theory of descriptions)
40. ~Lg ∧ Lg
41. ~Ii (22-40 IP)

So as long as you can provide the premise that God is not an island, not a pizza, etc. the proof works to show that such objects really are not in the intellect.

A Remix of Anselm’s Conceptual Ontological Argument

st-20anselm20weninger

D1. God is defined as the x such that there is not something, y, where y is conceivably greater than x.
P1. For all x, if x is conceivable, then there is something, y, such that either y is identical to x and y exists or there is something, z, such that z is identical to x, z does not exist, and y is conceivably greater than z.
P2. There is some x such that x is conceivable and it is not the case that there is some y such that y is conceivably greater than x.
P3. For all x and y, either x is conceivably greater than y or y is conceivably greater than x, or if it is not the case that either x is conceivably greater than y or that y is conceivably greater than x, there is some z such that z is the mereological sum of x and y, and either z is conceivably greater than x or z is conceivably greater than y.
C. God exists.1

E!x ≝ x exists
Cx ≝ x is conceivable
Gxy ≝ x is conceivably greater than y
σ<x,y> ≝ the mereological sum of x and y
g ≝ (ɿx)~(∃y)Gyx

1. (∀x){Cx ⊃ (∃y){[(y = x) ∧ E!y] ∨ (∃z)[(z = x) ∧ (~E!z ∧ Gyz)]}} (premise)
2. (∃x)(Cx ∧ ~(∃y)Gyx) (premise)
3. (∀x)(∀y){[Gxy ∨ Gyx] ∨ {~(Gxy ∨ Gyx) ⊃ (∃z)[(z = σ<x,y>) ∧ (Gzx ∨ Gzy)]}} (premise)
4. Cμ ∧ ~(∃y)Gyμ (2 EI)
5. ~(∃y)Gyμ (4 Simp)
6. (∃z)[~(∃z1)Gz1z ∧ ~(z = μ)] (IP)
7. ~(∃z1)Gz1ν ∧ ~(ν = μ) (6 EI)
8. (∀y){[Gνy ∨ Gyν] ∨ {~(Gνy ∨ Gyν) ⊃ (∃z)[(z = σ<ν,y>) ∧ (Gzν ∨ Gzy)]}} (3 UI)
9. [Gνμ ∨ Gμν] ∨ {~(Gνμ ∨ Gμν) ⊃ (∃z)[(z = σ<ν,μ>) ∧ (Gzν ∨ Gzμ)]} (8 UI)
10. (∀y)~Gyμ (5 QN)
11. ~Gνμ (10 UI)
12. ~(∃z1)Gz1ν (7 Simp)
13. (∀z1)~Gz1ν (12 QN)
14. ~Gμν (13 UI)
15. Gνμ ∨ [Gμν ∨ {~(Gνμ ∨ Gμν) ⊃ (∃z)[(z = σ<ν,μ>) ∧ (Gzν ∨ Gzμ)]}] (9 Assoc)
16. Gμν ∨ {~(Gνμ ∨ Gμν) ⊃ (∃z)[(z = σ<ν,μ>) ∧ (Gzν ∨ Gzμ)]} (11,15 DS)
17. ~(Gνμ ∨ Gμν) ⊃ (∃z)[(z = σ<ν,μ>) ∧ (Gzν ∨ Gzμ)] (14,16 DS)
18. ~Gνμ ∧ ~Gμν (11,14 Conj)
19. ~(Gνμ ∨ Gμν) (18 DeM)
20. (∃z)[(z = σ<ν,μ>) ∧ (Gzν ∨ Gzμ)] (17,19 MP)
21. (ζ = σ<ν,μ>) ∧ (Gζν ∨ Gζμ) (20 EI)
22. Gζν ∨ Gζμ (21 Simp)
23. ~Gζμ (10 UI)
24. Gζν (22,23 DS)
25. ~Gζν (13 UI)
26. Gζν ∧ ~Gζν (24,25 Conj)
24. ~(∃z)[~(∃z1)Gz1z ∧ ~(z = μ)] (6-23 IP)
25. (∀z)~[~(∃z1)Gz1z ∧ ~(z = μ)] (24 QN)
26. (∀z)[~~(∃z1)Gz1z ∨ ~~(z = μ)] (25 DeM)
27. (∀z)[~(∃z1)Gz1z ⊃ ~~(z = μ)] (26 Impl)
28. (∀z)[~(∃z1)Gz1z ⊃ (z = μ)] (27 DN)
29. {Cμ ∧ ~(∃y)Gyμ} ∧ (∀z)[~(∃z1)Gz1z ⊃ (z = μ)] (4,28 Conj)
30. Cμ ∧ {~(∃y)Gyμ ∧ (∀z)[~(∃z1)Gz1z ⊃ (z = μ)]} (29 Assoc)
31. {~(∃y)Gyμ ∧ (∀z)[~(∃z1)Gz1z ⊃ (z = μ)]} ∧ Cμ (30 Comm)
32. (∃x){~(∃y)Gyx ∧ (∀z)[~(∃z1)Gz1z ⊃ (z =x)]} ∧ Cx} (31 EG)
33. Cg (32 theory of descriptions)
34. Cg ⊃ (∃y){[(y = g) ∧ E!y] ∨ (∃z)[(z = g) ∧ (~E!z ∧ Gyz)]} (1 UI)
35. (∃y){[(y = g) ∧ E!y] ∨ (∃z)[(z = g) ∧ (~E!z ∧ Gyz)]} (33,34 MP)
36. [(ξ = g) ∧ E!ξ] ∨ (∃z)[(z = g) ∧ (~E!z ∧ Gξz)] (35 EI)
37. (∃z)[(z = g) ∧ (~E!z ∧ Gξz)] (IP)
38. (ν = g) ∧ (~E!ν ∧ Gξν) (37 EI)
39. ~E!ν ∧ Gξν (38 Simp)
40. Gξν (39 Simp)
41. (ν = g) (38 Simp)
42. Gξg (40,41 ID)
43. (∃x){~(∃y)Gyx ∧ (∀z)[~(∃z1)Gz1z ⊃ (z = x)]} ∧ Gξx} (42 theory of descriptions)
44. {~(∃y)Gyζ ∧ (∀z)[~(∃z1)Gz1z ⊃ (z = ζ)]} ∧ Gξζ (43 EI)
45. ~(∃y)Gyζ ∧ (∀z)[~(∃z1)Gz1z ⊃ (z = ζ)](44 Simp)
46. ~(∃y)Gyζ (45 Simp)
47. (∀y)~Gyζ (46 QN)
48. ~Gξζ (47 UI)
49. Gξζ (44 Simp)
50. Gξζ ∧ ~Gξζ (48,49 Conj)
51. ~(∃z)[(z = g) ∧ (~E!z ∧ Gξz)] (37-50 IP)
52. (ξ = g) ∧ E!ξ (36,51 DS)
53. (ξ = g) (52 Simp)
54. E!ξ (52 Simp)
55. E!g (53,54 ID)

QED

1 Some aspects of this argument are influenced by Oppenheimer & Zalta (1991), i.e. the existential quantifier carries no existential import and is analogous to Anselm’s existence in intellectu whereas E! is a predicate that indicates existence in re. One weakness of Oppenheimer & Zalta’s argument is that it depends on a non-logical axiom regarding Gxy such that it is connected. In other words, either Gxy or Gyx or (x = y). This requires all individuals to stand in a greater than relationship. It is plausible, though, that two non-identical individuals could share equal greatness. I am able to derive the uniqueness of the being than which none greater can be conceived by appealing to the notion that the merelogical composite of two equally great individuals is at least greater than one of its proper parts, which I take to be a modest premise. The interesting thing about my formulation is the first premise, which distinguishes in intellectu from in re existence, and captures Anselm’s claim that a greater could be conceived than a being that exists in the understanding alone without begging the question that this greater thing actually exists—it is merely conceptually greater.  See P.E Oppenheimer & E.N. Zalta. (1991). “On the Logic of the Ontological Argument.” In Philosophical Perspectives. Vol. 5. 509-529.